Isotope exchange studies on the Escherichia coli selenophosphate synthetase mechanism.
نویسندگان
چکیده
Selenophosphate synthetase, the Escherichia coli selD gene product, is a 37-kDa protein that catalyzes the synthesis of selenophosphate from ATP and selenide. In the absence of selenide, ATP is converted quantitatively to AMP and two orthophosphates in a very slow partial reaction. A monophosphorylated enzyme derivative containing the gamma-phosphoryl group of ATP has been implicated as an intermediate from the results of positional isotope exchange studies. Conservation of the phosphate bond energy in the final selenophosphate product is indicated by its ability to phosphorylate alcohols and amines to form O-phosphoryl- and N-phosphoryl-derivatives. To further probe the mechanism of action of selenophosphate synthetase, isotope exchange studies with [8-14C]ADP or [8-14C]AMP and unlabeled ATP were carried out, and 31P NMR analysis of reaction mixtures enriched in H218O was performed. A slow enzyme-catalyzed exchange of ADP with ATP observed in the absence of selenide implies the existence of a phosphorylated enzyme and further supports an intermediary role of ADP in the reaction. Under these conditions ADP is slowly converted to AMP. Incorporation of 18O from H218O exclusively into orthophosphate in the overall selenide-dependent reaction indicates that the beta-phosphoryl group of the enzyme-bound ADP is attacked by water with liberation of orthophosphate and formation of AMP. Based on these results and the failure of the enzyme to catalyze an exchange of labeled AMP with ATP, the existence of a pyrophosphorylated enzyme intermediate that was postulated earlier can be excluded.
منابع مشابه
Structural insights into the catalytic mechanism of Escherichia coli selenophosphate synthetase.
Selenophosphate synthetase (SPS) catalyzes the synthesis of selenophosphate, the selenium donor for the biosynthesis of selenocysteine and 2-selenouridine residues in seleno-tRNA. Selenocysteine, known as the 21st amino acid, is then incorporated into proteins during translation to form selenoproteins which serve a variety of cellular processes. SPS activity is dependent on both Mg(2+) and K(+)...
متن کاملCatalytic properties of selenophosphate synthetases: comparison of the selenocysteine-containing enzyme from Haemophilus influenzae with the corresponding cysteine-containing enzyme from Escherichia coli.
The selD gene from Haemophilus influenzae has been overexpressed in Escherichia coli. The expressed protein was purified to homogeneity in a four-step procedure and then carboxymethylated by reaction with chloroacetate. N-terminal sequencing by Edman degradation identified residue 16 as carboxymethyl selenocysteine, which corresponded to the essential cysteine residue in the glycine-rich sequen...
متن کاملSelD homolog from Drosophila lacking selenide-dependent monoselenophosphate synthetase activity.
The isolation and molecular characterization of an invertebrate gene that encodes a homolog of the human selenophosphate synthetase 1 is described. This Drosophila gene, termed selD-like, is located in the cytogenetic interval 50 D/E on the right arm of chromosome 2. It is expressed ubiquitously throughout embryogenesis and found to be highly enriched in the developing gut and in the nervous sy...
متن کاملThe class 2 selenophosphate synthetase gene of Drosophila contains a functional mammalian-type SECIS.
Synthesis of monoselenophosphate, the selenium donor required for the synthesis of selenocysteine (Sec) is catalyzed by the enzyme selenophosphate synthetase (SPS), first described in Escherichia coli. SPS homologs were identified in archaea, mammals and Drosophila. In the latter, however, an amino acid replacement is present within the catalytic domain and lacks selenide-dependent SPS activity...
متن کاملIck Young Kim and Thressa
In Escherichia coli and Salmonella typhimurium it has been shown that selenophosphate serves as the selenium donor for the conversion of seryl-tRNA to selenocysteyl-tRNA and for the synthesis of 2-selenouridine, a modified nucleoside present in tRNAs. Although selenocysteyl-tRNA also is formed in eukaryotes and is used for the specific insertion of selenocysteine into proteins, the precise mech...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 5 شماره
صفحات -
تاریخ انتشار 1998